Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Acta Anaesthesiol Scand ; 2023 Jun 08.
Article in English | MEDLINE | ID: covidwho-20239611

ABSTRACT

BACKGROUND: Among ICU patients with COVID-19, it is largely unknown how the overall outcome and resource use have changed with time, different genetic variants, and vaccination status. METHODS: For all Danish ICU patients with COVID-19 from March 10, 2020 to March 31, 2022, we manually retrieved data on demographics, comorbidities, vaccination status, use of life support, length of stay, and vital status from medical records. We compared patients based on the period of admittance and vaccination status and described changes in epidemiology related to the Omicron variant. RESULTS: Among all 2167 ICU patients with COVID-19, 327 were admitted during the first (March 10-19, 2020), 1053 during the second (May 20, 2020 to June 30, 2021) and 787 during the third wave (July 1, 2021 to March 31, 2022). We observed changes over the three waves in age (median 72 vs. 68 vs. 65 years), use of invasive mechanical ventilation (81% vs. 58% vs. 51%), renal replacement therapy (26% vs. 13% vs. 12%), extracorporeal membrane oxygenation (7% vs. 3% vs. 2%), duration of invasive mechanical ventilation (median 13 vs. 13 vs. 9 days) and ICU length of stay (median 13 vs. 10 vs. 7 days). Despite these changes, 90-day mortality remained constant (36% vs. 35% vs. 33%). Vaccination rates among ICU patients were 42% as compared to 80% in society. Unvaccinated versus vaccinated patients were younger (median 57 vs. 73 years), had less comorbidity (50% vs. 78%), and had lower 90-day mortality (29% vs. 51%). Patient characteristics changed significantly after the Omicron variant became dominant including a decrease in the use of COVID-specific pharmacological agents from 95% to 69%. CONCLUSIONS: In Danish ICUs, the use of life support declined, while mortality seemed unchanged throughout the three waves of COVID-19. Vaccination rates were lower among ICU patients than in society, but the selected group of vaccinated patients admitted to the ICU still had very severe disease courses. When the Omicron variant became dominant a lower fraction of SARS-CoV-2 positive patients received COVID treatment indicating other causes for ICU admission.

2.
Acta Anaesthesiol Scand ; 66(3): 408-414, 2022 03.
Article in English | MEDLINE | ID: covidwho-1583710

ABSTRACT

BACKGROUND: Respiratory failure is the main cause of mortality and morbidity among ICU patients with coronavirus disease 2019 (COVID-19). In these patients, supplemental oxygen therapy is essential, but there is limited evidence the optimal target. To address this, the ongoing handling oxygenation targets in COVID-19 (HOT-COVID) trial was initiated to investigate the effect of a lower oxygenation target (partial pressure of arterial oxygen (PaO2 ) of 8 kPa) versus a higher oxygenation target (PaO2 of 12 kPa) in the ICU on clinical outcome in patients with COVID-19 and hypoxaemia. METHODS: The HOT-COVID is planned to enrol 780 patients. This paper presents the protocol and statistical analysis plan for the conduct of a secondary Bayesian analysis of the primary outcome of HOT-COVID being days alive without life-support at 90 days and the secondary outcome 90-day all-cause mortality. Furthermore, both outcomes will be investigated for the presence heterogeneity of treatment effects based on four baseline parameters being sequential organ failure assessment score, PaO2 /fraction of inspired oxygen ratio, highest dose of norepinephrine during the 24 h before randomisation, and plasma concentration of lactate at randomisation. CONCLUSION: The results of this pre-planned secondary Bayesian analysis will complement the primary frequentist analysis of the HOT-COVID trial and may facilitate a more nuanced interpretation of the trial results.


Subject(s)
COVID-19 , Respiratory Insufficiency , Bayes Theorem , Humans , Hypoxia , SARS-CoV-2 , Treatment Outcome
3.
Acta Anaesthesiol Scand ; 66(1): 145-151, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1455492

ABSTRACT

BACKGROUND: Many organs can remain impaired after discharge from the intensive care unit (ICU) leading to temporal or permanent dysfunctions. Long-term impairments may be affected by supplemental oxygen, a common treatment in ICU, having both potential beneficial and harmful long-lasting effects. This systematic review aims to assess the long-term outcomes of lower versus higher oxygen supplementation and/or oxygenation levels in adults admitted to ICU. METHODS: We will include trials differentiating between a lower and a higher oxygen supplementation or a lower and a higher oxygenation strategy in adults admitted to the ICU. We will search major electronic databases and trial registers for randomised clinical trials. Two authors will independently screen and select references for inclusion using Covidence and predefined data will be extracted. The methodological quality and risk of bias of included trials will be evaluated using the Cochrane Risk of Bias tool 2. Meta-analysis will be performed if two or more trials with comparable outcome measures will be included. Otherwise, a narrative description of the trials' results will be presented instead. To assess the certainty of evidence, we will create a 'Summary of findings' table containing all prespecified outcomes using the GRADE system. The protocol is submitted on the PROSPERO database (ID 223630). CONCLUSION: No systematic reviews on the impact of oxygen treatment in the ICU on long-term outcomes, other than mortality and quality of life, have been reported yet. This systematic review will provide an overview of the current evidence and will help future research in the field.


Subject(s)
Intensive Care Units , Quality of Life , Adult , Hospitalization , Humans , Meta-Analysis as Topic , Oxygen Inhalation Therapy , Patient Discharge , Systematic Reviews as Topic
4.
Acta Anaesthesiol Scand ; 65(10): 1497-1504, 2021 11.
Article in English | MEDLINE | ID: covidwho-1327500

ABSTRACT

BACKGROUND: Coronavirus disease (COVID-19) primarily affects the lungs and lower airways and may present as hypoxaemic respiratory failure requiring admission to an intensive care unit (ICU) for supportive treatment. Here, supplemental oxygen remains essential for COVID-19 patient management, but the optimal dosage is not defined. We hypothesize that targeting an arterial partial pressure of oxygen of 8 kPa throughout ICU admission is superior to targeting 12 kPa. METHODS: The Handling Oxygenation Targets in ICU patients with COVID-19 (HOT-COVID) trial, is an investigator-initiated, pragmatic, multicentre, randomized, parallel-group trial comparing a lower oxygenation target versus a higher oxygenation target in adult ICU patients with COVID-19. The primary outcome is days alive without life-support (use of mechanical ventilation, renal replacement therapy or vasoactive therapy) at day 90. Secondary outcomes are 90-day and 1-year mortality, serious adverse events in the ICU and days alive and out of hospital in the 90-day period, health-related quality-of-life at 1 year, and health economic analyses. One-year follow-up of cognitive and pulmonary function is planned in a subgroup of Danish patients. We will include 780 patients to detect or reject an absolute increase in days alive without life-support of 7 days with an α of 5% and a ß of 20%. An interim analysis is planned after 90-day follow-up of 390 patients. CONCLUSIONS: The HOT-COVID trial will provide patient-important data on the effect of two oxygenation targets in ICU patients with COVID-19 and hypoxia. This protocol paper describes the background, design and statistical analysis plan for the trial.


Subject(s)
COVID-19 , Adult , COVID-19/therapy , Critical Care , Humans , Intensive Care Units , Lung , Multicenter Studies as Topic , Pragmatic Clinical Trials as Topic , Randomized Controlled Trials as Topic , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL